
Utilizando Monte Carlo e Reamostragem em Estimativas

Mauricio Aguiar, TI Métricas

Agenda

- Introdução
- Um Exemplo Simples
- Outro Exemplo
- Reamostragem
- Faça Você Mesmo Monte Carlo
- Resumo

Introdução Estimativas

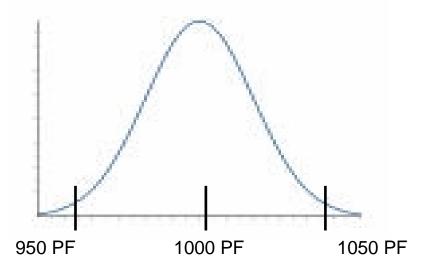
- Estimativas são projeções quantitativas de características dos projetos, tais como:
 - Tamanho do Produto
 - Esforço Requerido
 - Prazo Requerido
 - Qualidade

Introdução Incerteza e Monte Carlo

- Há um grau de incerteza nos parâmetros de entrada de um modelo de estimativa
- Desejamos avaliar como essa incerteza pode afetar os resultados
- Isso pode ser feito através de simulação (Monte Carlo Simulation)

Introdução Entradas de um Modelo de Estimativa

- Tamanho (Pontos de Função, etc.)
- Características do Produto e do Projeto
- Esforço Estimado por Atividade
- etc.



Introdução Modelando a Incerteza

 Permitir que as entradas variem segundo distribuições estatísticas definidas

Ex.: Tamanho

Distribuição Normal

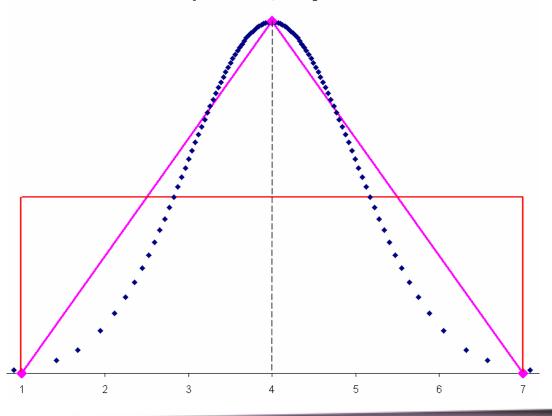
Um Exemplo Simples O Problema

• Executar construção e teste unitário para 5 módulos (classes, funções, subrotinas...)

Módulo	Mínimo (d)	Esperado (d)	Máximo (d)	Programador	Qualidade da Estimativa
Α	2	4	10	Arnaldo	Baixa
В	4	6	10	Ronaldo	Baixa
С	8	12	16	André	Média
D	3	5	6	Paulo	Alta
Е	2	4	6	Nilton	Média
Totais	19	31	48		

Assuma que o trabalho será feito sequencialmente

Um Exemplo Simples Como Fazer Melhor

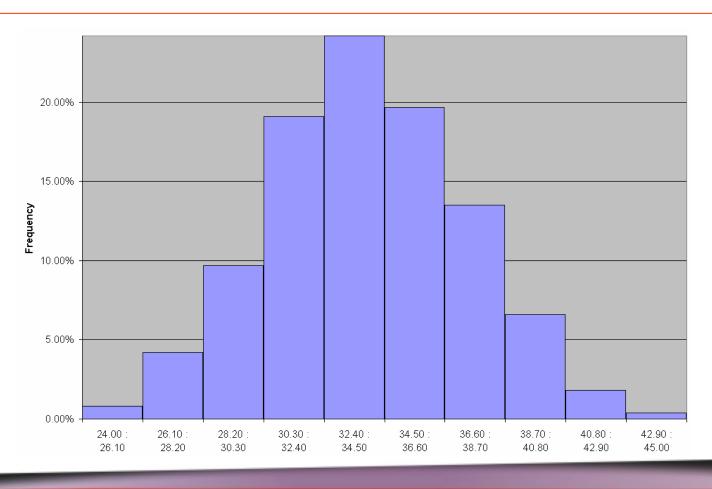

- Com 100% de probabilidade de acerto, o prazo seria 48 dias
- Um prazo menor com 90% de probabilidade de acerto seria suficiente
- Qual seria esse prazo?

Um Exemplo Simples Modelando a Incerteza

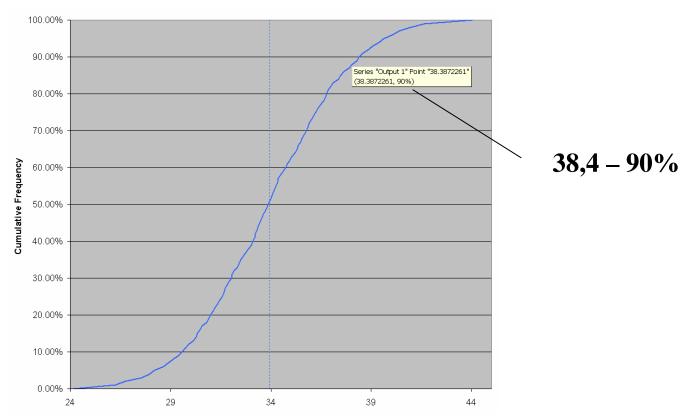
encontro anual de gerenciamento de projetos

Um Exemplo Simples Monte Carlo

- Simular 10000 vezes a execução da construção e teste unitário dos 5 módulos
 - Variar os prazos individuais conforme as respectivas distribuições
 - Avaliar a variação do prazo total

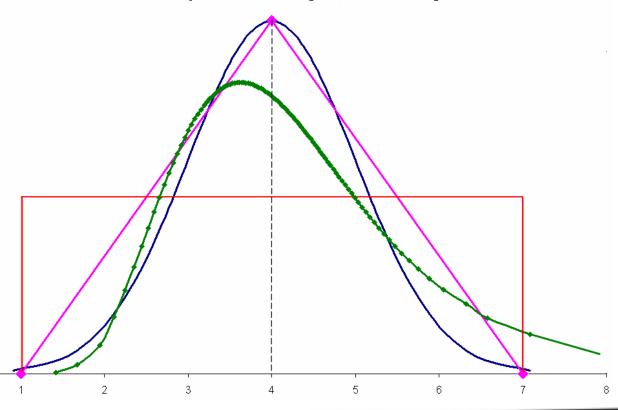

Um Exemplo Simples Monte Carlo

Módulo	Mínimo (d)	Esperado (d)	Máximo (d)	Simulado	Distribuição
Α	2	4	10	3.31064072	Uniforme
В	4	6	10	6.95388124	Uniforme
С	8	12	16	11.1681224	Triangular
D	3	5	6	5.81785033	Normal
Е	2	4	6	3.68017662	Triangular
Totais	19	31	48	30.9306713	


Um Exemplo Simples Histograma do Prazo Simulado

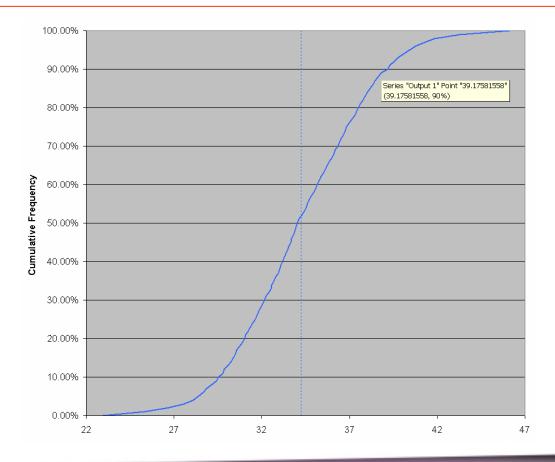
Um Exemplo Simples Frequência Acumulada do Prazo Simulado

Prazo menor ou igual a 38 dias com 90% de probabilidade de acerto



- As distribuições utilizadas correspondem à realidade?
- A probabilidade de terminar antes é a mesma de terminar depois?

• Simular 10000 vezes a execução da construção e teste unitário dos 5 módulos, utilizando a distribuição lognormal somente no caso anteriormente "normal"



Módulo	Mínimo (d)	Esperado (d)	Máximo (d)	Simulado	Distribuição
Α	2	4	10	9.21425821	Uniforme
В	4	6	10	5.52832972	Uniforme
С	8	12	16	9.84395835	Triangular
D	3	5	6	3.47258674	Lognormal
Е	2	4	6	4.86700713	Triangular
Totais	19	31	48	32.9261401	

O prazo agora é 39 dias

DE GERENGIAMENTO DE PROJETOS

Outro Exemplo Produtividade de 9 Projetos

Projeto	Tamanho (PF)	Esforço	Produtividade
P1	98	1910	19,5
P2	184	2760	15,0
P3	212	2010	9,5
P4	196	1620	8,3
P5	261	1855	7,1
P6	257	1980	7,7
P7	430	7830	18,2
P8	190	1740	9,2
P9	310	4890	15,8
			40.0

Média 12,2

Produtividade em Horas/Pontos de Função

Nota: Dados fictícios

Outro Exemplo Estimando o Erro

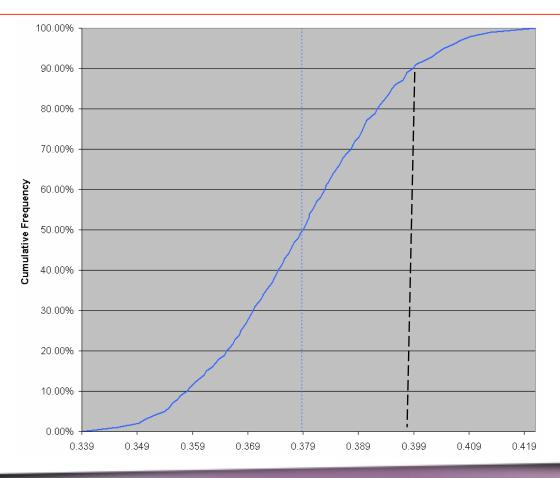
((Estimado - Real)/Real) * 100

Projeto	Tamanho (PF)	Esforço	Produtividade	Estimativa I	Erro % ABS
P1	98	1910	19,5	1200	37,2%
P2	184	2760	15,0	2253	18,4%
P3	212	2010	9,5	2596	29,1%
P4	196	1620	8,3	2400	48,1%
P5	261	1855	7,1	3195	72,3%
P6	257	1980	7,7	3147	58,9%
P7	430	7830	18,2	5265	32,8%
P8	190	1740	9,2	2326	33,7%
P9	310	4890	15,8	3795	22,4%
		Média	12,2	MRE	39,2%

Mean Relative Error

Outro Exemplo Dados de Esforço

- Muitas vezes a qualidade dos dados de esforço é questionável
- Como o erro nos dados de esforço afetaria o erro de estimativa?


Outro Exemplo Dados de Esforço

Proj	PF	Qual.	Mín.	Esp.	Máx.	Distribuição	Esforço	Prod.	Est.	Erro % ABS
P1	98	Baixa	1600	1910	2100	Uniforme	2094	21.4	1238	35.2%
P2	184	Baixa	2500	2760	3000	Uniforme	2621	14.2	2325	15.8%
P3	212	Alta	1950	2010	2100	Normal	2013	9.5	2679	33.3%
P4	196	Média	1500	1620	1800	Triangular	1671	8.5	2477	52.9%
P5	261	Baixa	1500	1855	2200	Uniforme	2122	8.1	3298	77.8%
P6	257	Baixa	1500	1980	2400	Uniforme	1681	6.5	3248	64.0%
P7	430	Baixa	5000	7830	9000	Uniforme	8872	20.6	5434	30.6%
P8	190	Alta	1700	1740	1800	Normal	1707	9.0	2401	38.0%
P9	310	Média	4600	4890	4900	Triangular	4899	15.8	3917	19.9%
							Média	12.6	MRE	40.8%

Outro Exemplo Dados de Esforço

O erro é inferior a 40% com 90% de probabilidade.

O máximo é 42%.

TENGONTRO ANUAL DE GERENGIAMENTO DE PROJETOS

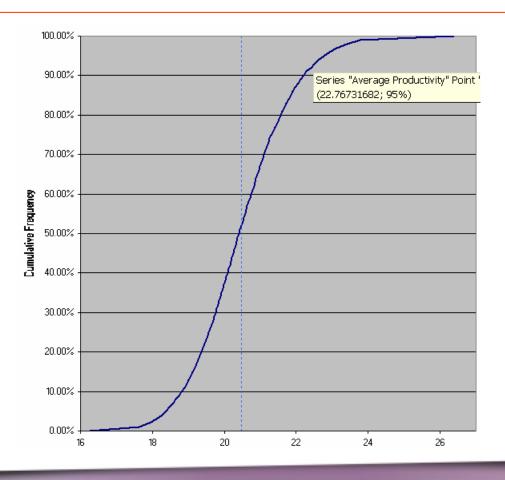
Reamostragem A Idéia

- Monte Carlo exige que façamos suposições sobre as distribuições
- A Reamostragem basea-se na replicação de uma amostra (podendo haver repetições)
- As estatísticas baseadas em reamostragem aproximam-se dos valores reais, conforme cresce o número de amostras
- A Reamostragem independe de suposições sobre as distribuições

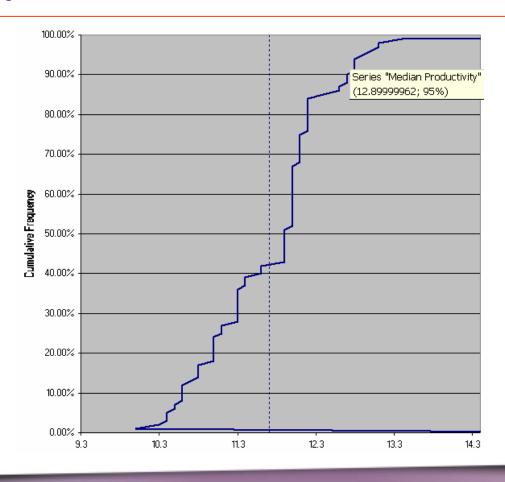
Reamostragem Um Exemplo

- Construir um intervalo de confiança a 90% para a produtividade do COBOL, com base no banco de dados ISBSG V10
- Os dados: 615 projetos, produtividade média **20.5** H/PF, produtividade mediana **11.9** H/PF

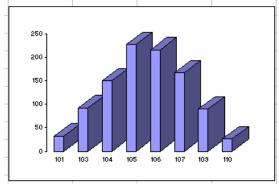
Reamostragem


Distribuição Amostral: Média, Mediana

	Average Productivity	Median Productivity	
Average	20.47295952	11.70256901	
Std Dev	1.32359835	0.76645153	
Std Err	0.013235984	0.007664515	
Max	26.36926842	14.30000019	
Min	16.26861763	9.399999619	


Reamostragem Distribuição Amostral: Média

Reamostragem Distribuição Amostral: Mediana



	А	В	С	D				
1	Simulação da Distribuição Triangular							
2								
3	Iterações:	1000	Simular					
4								
5	Mínimo	100						
6	Esperado	105						
7	Máximo	110						
8								
9	Val Aleat.	0.119205						
10	Triangular	102.4414						
11								

Mínimo	100.078	Média	104.968
Máximo	109.9004	Mediana	104.987
Amplitude	9.8224		
Freqs	Faixas	%	
32	101.3058	3.20%	3.20%
92	102.5336	9.20%	12.40%
150	103.7614	15.00%	27.40%
227	104.9892	22.70%	50.10%
216	106.217	21.60%	71.70%
167	107.4448	16.70%	88.40%
90	108.6726	9.00%	97.40%
26	109.9004	2.60%	100.00%
1000		100.00%	

Trabalhando com Excel VBA

```
Function TriDist(ByVal prob As Single, ByVal opt As Single, ByVal expect As
'Esta função retorna um valor segundo a distribuição triangular com
'opt = valor mínimo
'expect = valor esperado
'pess = valor máximo

Dim x, d As Single
d = pess - opt
x = (expect - opt) / d
If prob <= x Then TriDist = opt + (((prob * x) ^ 0.5) * d)
If prob > x Then TriDist = pess - ((((1 - prob) * (1 - x)) ^ 0.5) * d)
End Function
```



```
Sub Simular()
   Dim intI, intNumIteracoes As Integer
   intNumIteracoes = Sheets("Main").Range("B3").Value
   If intNumIteracoes <= 0 Then
       MsgBox ("Número de iterações deve ser > 0")
        Exit Sub
   End If
   If intNumIteracoes > 10000 Then
       MsgBox ("Número máximo de iterações = 10000")
        Exit Sub
   End If
    'Resultados: Usar Colunas A, B, C, D, E
   Sheets ("Dados") . Select
   Sheets ("Dados") . Range ("A27") . Select
   ActiveWindow.FreezePanes = True
   Sheets ("Dados") . Range ("A1") . Select
   Sheets ("Dados") .Range ("A1:E10000") .Clear
   For intI = 1 To intNumIteracoes
       Application.StatusBar = "Processando Iteração... " & intI
        'Distr Triangular
       Sheets ("Main") .Range ("B10") .Copy
        Sheets("Dados").Cells(intI, 1).PasteSpecial Paste:=xlValues,
                                         Operation:=xlNone,
                                         SkipBlanks:=False,
                                         Transpose:=False
   Next intI
   ActiveWindow.FreezePanes = False
   Application.StatusBar = False
End Sub
```


Resumo O Que Vimos

- Monte Carlo ajuda a identificar a variação nos resultados em função da incerteza nas entradas
- A escolha das distribuições estatísticas é muito importante em Monte Carlo
- A Reamostragem funciona mesmo quando a distribuição é desconhecida
- É possível fazer muita coisa com Excel e VBA
- Há ferramentas profissionais para Monte Carlo (Crystal Ball, @Risk, XLSim, etc.)

Resumo Referências

- Savage, Sam L., Decision Making with Insight
 - XLSim 2.0

- Mooney, C.Z. and Duval, R.D. Bootstrapping: A Nonparametric Approach to Statistical Inference, SAGE, 1993
- Davidson, A.C. and Hinkley, D.V., Bootstrap Methods and Their Application, Cambridge University Press, 1997

Agradecemos a sua Participação

Mauricio Aguiar

ti MÉTRICAS

mauricio@metricas.com.br www.metricas.com.br

